II B.Tech - I Semester - Regular Examinations - MARCH 2021

ENGINEERING MATHEMATICS - III
 (PDE Complex Variables and Transform Techniques) (Common to CIVIL, EEE, ME, ECE)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) If $L\{f(t)\}=\frac{1}{s\left(s^{2}+1\right)}$, find $L\{f(3 t)\}$
b) Find the Fourier coefficient a_{0} for $f(x)=x-x^{2}$ in $-\pi \leq x \leq \pi$.
c)

Find the Fourier sine transform of $f(x)= \begin{cases}1, & 0 \leq x<2 \\ 0, & x \geq 2\end{cases}$
d) Show that $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane.
e) Classify the PDE: $3 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+6 \frac{\partial^{2} u}{\partial y^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}-u=0$

PART - B
 UNIT - I

2. a) Evaluate $L\left\{e^{-t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}$
b)

Apply convolution theorem to evaluate $L^{L^{-1}}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$
6 M

OR

3. a) Evaluate $L\{t \sin 3 t \cos 2 t\}$
b) Find the inverse Laplace transform of $\frac{4 s+5}{(s-1)^{2}(s+2)}$

UNIT - II
4. a) Find the Fourier series for the function

$$
f(x)=\left\{\begin{array}{cc}
-\pi, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

b) Obtain the half-range Fourier cosine series for $f(x)=x$ in $[0,2]$.

OR

a) Obtain the Fourier series for the function $f(x)=|x|$ in $\quad 6 \mathrm{M}$ 5. $-\pi \leq x \leq \pi$.
b) Find the half-range Fourier sine series for $f(x)=x(\pi-x) \quad 6 \mathrm{M}$ in $0<x<\pi$. Hence deduce that

$$
\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots=\frac{\pi^{3}}{32}
$$

UNIT-III

6.

a) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}a^{2}-x^{2}, & |x| \leq a \\ 0, & |x|>a\end{array}\right.$.

6 M
b) Obtain Fourier cosine transform of

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x<1 \\
2-x, & 1<x<2 \\
0, & x>2
\end{array}\right.
$$

OR

7. a) Find the Fourier integral representation for

$$
f(x)=\left\{\begin{array}{cc}
1-x^{2}, & |x| \leq 1 \\
0, & |x|>1
\end{array} .\right.
$$

b) Find the Fourier sine transform of $f(x)=e^{-|x|}$. Hence
show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}(m>0)$

UNIT - IV

8. a)

Show that $f(z)=\left\{\begin{array}{cc}\frac{x y^{2}(x+i y)}{x^{2}+y^{4}}, & z \neq 0 \\ 0, & z=0\end{array}\right.$ is not analytic at $z=0$
6 M
although C-R equations are satisfied at that point
b) Find the analytic function whose real part is $y+e^{x} \cos y \quad 6 \mathrm{M}$

OR

9.

a) Evaluate

Cauchy's integral formula
b) Expand $f(z)=\frac{1}{(z-1)(z+3)}$ in Laurent's series for $1<|z|<3$

UNIT - V

10. a) A tightly stretched string with fixed end points $x=0 \& 6 \mathrm{M}$ $x=l$ is initially in a position given by
$y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position. Find the displacement $y(x, t)$.
b) Determine the solution of the initial boundary value problem

$$
\begin{aligned}
& \frac{\partial y}{\partial t}=16 \frac{\partial^{2} y}{\partial x^{2}}, 0<x<l, t>0 \\
& y(0, t)=y(l, t)=0, t>0 \\
& y(x, 0)=(1-x) x, 0<x<1 .
\end{aligned}
$$

OR
11. a) Solve the following initial boundary value problem Obtain the solution of the initial boundary value problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}, 0<x<\pi, t>0, \\
& u(0, t)=u(\pi, t)=0, t>0, \\
& u(x, 0)=\sin x, 0 \leq x \leq \pi .
\end{aligned}
$$

b) Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where ${ }^{u(x, 0)=6 e^{-3 x}}$ by the method of separation of variables

